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An obliquely inclined circular water jet, impinging on a flat horizontal surface,
confers a series of hydraulic jump profiles, pertaining to different jet inclinations
and jet velocities. These jump profiles are non-circular, and can be broadly grouped
into two categories, based on the angle of jet inclination, φ, made with horizontal.
Jumps corrosponding to the range (25◦ < φ � 90◦) are observed to be bounded
by smooth curves, whereas those corresponding to φ � 25◦ are characterized by
distinct corners. The present work attempts to find a geometric and hydrodynamic
characterization of the spatial patterns formed as a consequence of such non-circular
hydraulic jump profiles. Flow-visualization experiments are conducted to depict the
shape of demarcating boundaries between supercritical and subcritical flows, and the
corresponding radial jump locations are obtained. Theoretical calculations are also
executed to obtain the radial locations of the jumps with geometrically smooth profiles.
Comparisons are subsequently made between the theoretical predictions and the
experimental observations, and a good agreement between these two can be observed.
Jumps with corners, however, turn out to be comprised of strikingly contrasting
profiles, which can be attributed to the ‘jump–jet’ interaction and the ‘jump-jump’
interaction mechanisms. A phenomenological explanation is also provided, by drawing
an analogy from the theory of shock-wave interactions.

1. Introduction
Normal impingement of jets on surfaces is an established technique for providing

high local heat/mass transfer rates in a variety of applications, including glass
manufacturing, paper drying, gas turbine cooling and electronic packaging. It is well-
known that the circular hydraulic jump is a consequence of the normal impingement
of circular liquid jets on a flat horizontal surface. Physics of flow patterns obtained
under these conditions have been relatively well studied. Figure 1(a)(i) illustrates a
typical circular hydraulic jump due to a normal impinging jet, while the corresponding
experimental visualization is depicted in figure 1(a)(ii). Following the pioneering
studies of Glauert (1956), Bradshaw & Love (1959), Abramovich (1963), Watson
(1964) and Rajaratnam (1976), it can be inferred that the flow field due to normal
impinging jets can be divided into three main regions, namely, the free jet region,
the impingement region, and the wall jet region. The latter two regions have been
further grouped into five sub regions, labelled S1, S2, S3, S4 and S5 in figure 1(c).
The five subregions have been classically termed as the region of boundary-layer-type
flow, the region of fully developed flow, the region immediately before the hydraulic
jump, the region of the hydraulic jump, and the region downstream of the jump,
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Figure 1. Illustrative sketches for (a)(i) Normal impinging jet, and (b)(i) oblique impinging
jet. (a)(ii) The circular hydraulic jump (circular liquid jet impinging normal to the horizontal
surface), volume flow rate of water, Q = 1 × 10−4 m3 s−1, nozzle diameter, d = 8.8 mm. (b)(ii)
Non-circular hydraulic jump due to a circular liquid jet impinging obliquely on a horizontal
surface, Q = 1 × 10−4 m3 s−1, d = 8.8 mm, nozzle inclination (with horizontal), φn = π/4.
(c) Regions of flow field in the case of a normal impinging jet.

respectively (for details see: Watson 1964; Rao & Arakeri 1998). Various aspects of
the circular hydraulic jumps, formed under identical conditions, have been extensively
studied (Watson 1964; Olsson & Turkdogan 1966; Ishigai et al. 1977; Nakoryakov,
Pokusaev & Troyan 1978; Craik et al. 1981; Bohr, Dimon & Putkaradze 1993;
Godwin 1993; Liu & Lienhard 1993; Higuera 1994, 1997; Blackford 1996; Hansen
et al. 1997; Brechet & Néda 1999; and Bush & Aristoff 2003). Oblique impinging
jets, in comparison to normal impinging jets, however, have received relatively less
attention in the fluid mechanics literature. Figure 1(b)(i) schematically describes an
oblique impinging jet and the associated hydraulic jump characteristics, with the
corresponding photographic view depicted in figure 1(b)(ii). The obliquity of the jet
turns out to be a major parameter in determining the nature of the flow in the case
of such non-circular hydraulic jumps, primarily in the following respects. First, the
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axial symmetry exists only up to the free jet region, and the flow, in general, is three-
dimensional elsewhere (Beltos 1976; Rubel 1981). Secondly, the impingement region,
which is considered to span over the cross-section of the jet for a normal impinging
jet, is expected to change in size and shape, as the jet becomes obliquely inclined to the
horizontal surface. Further, the stagnation point in the impingement zone is no more
coincident with the geometrical centre of the jet. An upstream shift of the stagnation
point from the geometrical centre of the non-circular impingement zone for oblique
impinging jets has been reported in the studies of Beltos (1976), Sparrow & Lovell
(1980), Stevens & Webb (1991), Rubel (1981, 1982) and Tong (2003). The radial flow
originating from this eccentric stagnation point leads to non-circular hydraulic jump
profiles, which is a fundamentally complicated fluid dynamic phenomenon. To the
best of our knowledge, even elementary theories for quantitative characterization of
the spatial patterns formed as a consequence of such non-circular hydraulic jumps,
supported by requisite validation experiments, are yet to be reported in the literature.
The aim of the present work, accordingly, is to develop a fundamental understanding
of the geometrical features of non-circular hydraulic jumps, formed as a consequence
of oblique impingement of circular liquid jets from both experimental and theoretical
perspectives, with a quantitative characterization of the pertinent spatial patterns
formed.

The outline of this paper is as follows. In § 2, laboratory experiments for the circular
and non-circular hydraulic jumps will be discussed. In § 3, a theoretical analysis for
the location of the stagnation point will be elaborated. Prediction of radial locations
for non-circular hydraulic jumps will subsequently be made, and these results will be
further compared with the data obtained from experiments. Hydraulic jumps with
corners will be discussed in § 4. In § 5, concluding remarks based on the present study
will be outlined.

2. Experiments, flow visualization and observations
The experimental set-up consists of a closed-loop water-jet system, comprised

of a centrifugal pump (0.5 h.p., head 30/6 m, capacity 15/40 l min−1, 2800 r.p.m.), two
rotameters calibrated in the range of 1.67 × 10−5−1.67 × 10−4 m3 s−1 and 1.67 × 10−5−
3.33 × 10−4 m3 s−1, and circular tubes of brass and stainless steel (in the diameter range
4–10 mm). These tubes can be used as nozzles having a length to diameter ratio of
150–200, so as to ensure a fully developed flow condition at the exit. The jet issuing
from the nozzle is made to fall on a square glass plate of dimensions 1 m × 1 m, and
a thickness of 8 mm, mounted on four levelling screws. The edge of the glass plate is
chamfered with a radius of approximately 4 mm on the top face, for smooth drainage
of the liquid. The set-up is fabricated such that that the jump can be viewed and
photographed from underneath of the glass plate. Calibration of the experimental
set-up has been performed by employing benchmark (experimental) data available in
the literature for circular hydraulic jumps. Figure 2 compares the present experimental
results with the experimental results of Arakeri & Rao (1996). The figure also shows
some of the theoretically predicted estimates of the radius of the jump, using the
scaling relations developed by Bohr et al. (1993), Godwin (1993) and Brechet & Néda
(1999), under identical conditions, for the sake of completeness. As can be seen from
figure 2, our experimental results are in good agreement with theoretical predictions
obtained from the scaling relations developed by Bohr et al. (1993), and experimental
results of Arakeri & Rao (1996).
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Figure 2. The radius of the circular hydraulic jump (Rj ) as a function of the volume flow rate
of water (Q). �, experiments (nozzle diameter, d = 10 mm) (Arakeri & Rao 1996); �, theory
(Bohr et al. 1993); �, theory (Brechet & Neda 1999); �, theory (Godwin 1993); �, present
experiments (d = 10 mm).

Figure 3. The jump profile is measured using graph paper. A shadow of the jump and
impingement point (indicated with an arrow) is clearly visible.

Flow visualization is carried out using a digital camera (SONY DSC-F717, Sony
Electronics NJ). A 1000 W light source is used for illumination from the top. The
impingement point and the inner edge of the separation eddies are clearly visible,
signifying the pertinent jump locations, and are marked on transparent graph sheets
(containing square meshes of 1mm resolution) pasted on the underside of the glass
plate (figure 3). From our flow visualization experiments, we summarize that the jump
profiles due to obliquely inclined impinging jets can be broadly catagorized as follows:
(a) jumps bounded by a smooth curve (jumps formed when φ > 25◦), and (b) jumps
with corners (jumps formed when φ � 25◦). As φ becomes less than 90◦, the radial
symmetry of the hydraulic jump is lost and it assumes an oblate shape. However,
the curve describing this jump is smooth, and we can identify an axis of symmetry
passing through the point of impingement (θ = 0) and θ = π, where θ is the azimuthal
location of a point on the hydraulic jump profile (see figure 1b). The jump profile
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Figure 4. Hydraulic jumps at different flow rates, and nozzle inclination angles. (a) Q = 3.33 ×
10−5 m3 s−1, d = 10 mm, (b) Q = 1.17 × 10−4 m3 s−1, d = 10 mm, (c) Q = 3.33 × 10−5 m3 s−1,
d = 8.8 mm, φn = π/4, (d) Q = 1 × 10−4 m3 s−1, d = 8.8 mm, φn = π/4, (e) unique hydraulic jump
observed at φn = 18◦, H = 9 mm, d =6.45 mm and Q = 4.17 × 10−5 m3 s−1.

elongates progressively with an increase of V , and decrease in φ. It can be noted here
that for φ > 25◦, changes in V can merely alter the slenderness of the jump profile,
without creating any corner. However, for φ � 25◦, in our experiments, a series of
unique jump profiles are observed. These profiles have one or more corners, and their
shapes are highly sensitive to the variation of V . Typical hydraulic jumps, both due
to normal and oblique impinging jets are depicted in figure 4. The hydraulic jumps at
lower flow rates are observed to be steady and distinct (figure 4a, c). However, jumps
at relatively higher flow rates are unsteady and ill-defined (figure 4b, d). During our
experiments, the jet Reynolds number (Red)is observed to be in the range of 4000 to
25 000. Within this regime, transition to turbulence does not occur. However, beyond
Red = 26 000 it is observed that the circular hydraulic jump loses its radial symmetry
and the corresponding non-circular hydraulic jump loses its axial symmetry. Analysis
of hydraulic jumps formed as a consequence of oblique impingement of such turbulent
liquid jets, however, remains beyond the scope of present study, and therefore, is not
further discussed here.

In contrast to the circular hydraulic jumps, it is found that for inclined impinging
jets, the drop height, H , implicitly plays a consequential role in determining the size
and shape of the non-circular hydraulic jump. Gravity effects deflect the jet in such
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cases, so that the jet angle, (φ), becomes greater than the nozzle angle (φn), as can
be seen in figure 2(b). This effect is more pronounced for larger drop heights and at
lower flow rates. It can be shown that φ, φn and V are related as:

φ = tan−1

[(
V 2 sin2 φn + 2gH

)1/2

V cos φn

]
. (2.1)

The value of φ obtained using (2.1) is used in further calculations reported in this
study. In this context, once this effective angle of jet obliquity is ascertained, any
further significance of the drop height, H , becomes practically irrelevant in terms of
imposing an explicit influence on the mechanism of the hydraulic jump formed.

3. Theoretical analysis
3.1. Characterization of the stagnation point for jumps bounded by a smooth curve

The present theoretical analysis borrows its basic outline from the earlier
considerations of Bradshaw & Love (1959), Scholtz & Trass (1970), Looney & Walsh
(1984), Bouainouche, Bourabaa & Desmet (1997), and Phares, Smedley & Flagan
(2000). In effect, in the present study, an inviscid outer-flow analysis is coupled with
the boundary-layer approximations for prediction of radial locations of non-circular
hydraulic jumps. The analysis primarily deals with the consequence of an oblique
impingement of a circular jet of radius r0 (diameter, d) impinging on a stationery
horizontal plate with V as the velocity of jet impingement. After impingement, the
fluid flows radially with velocity Vr . The distribution of this radial flow is uneven, the
flux being the highest in the forward flow direction and the lowest in the backward
flow direction. The stagnation point, here, is considered to be the point of intersection
of the separation streamline with the plane of the impinging surface (figure 5a). The
section of this jet, on a plane parallel to the plate, turns out to be an ellipse, of major
axis (2r0/ sin φ), and minor axis (2r0), as shown in figure 5(b). Figure 5(c) shows the
top view of the radially spreading flow, along with the section of the jet on the target
plate. The origin of the radial flow is located at the stagnation point, S. Assuming
a steady flow and neglecting the effects of gravity, surface tension and viscosity, we
can write an expression for mass conservation across the shaded element depicted in
figure 5(c) as

(redθ)
re

2
(V sinφ) =

(
rpdθ

)
hVr, (3.1)

where, re = re(φ, θ) is the polar radius of the envelope of the impingement region,
and rp is the radial distance of a point located on the plate (relative to the point S),
and h is the film thickness. Further, from mechanical energy balance, it follows that
the velocity V is equal to Vr . Hence, (3.1) can be expressed as

hrp =
r2
e

2
sin φ. (3.2)

Now, equating the forward momentum (in the X-direction) transmitted by the jet
with the net X momentum generated in the radial flow, we obtain

πr2
0V

2� cos φ =

∫ 2π

0

(hrp)�V 2
r cos θ dθ, (3.3)
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Figure 5. (a) The stagnation point, the point of intersection of the separation streamline with
the plane of the impinging surface. (b) The section of the circular jet, on a plane parallel to
the plate is an ellipse. (c) The top view of the radially spreading flow along with the section of
the jet on a plate.

where � is the density of liquid. From (3.2) and (3.3), we obtain

π cot φ =

∫ π

0

(
re

r0

)2

cos θ dθ. (3.4)

Further, the polar equation of the outer boundary of the impingement zone is given
as (

re

r0

sin θ

)2

+

(
re

r0

cos θ − Ss

r0

)2

sin2φ = 1, (3.5)

where Ss is the stagnation point shift (i.e. the distance of the stagnation point from
the geometrical centre of the jump profile, O). Obtaining an expression for re/r0 from
(3.5) and using the same in (3.4), it can be shown that

Ss = r0 cotφ. (3.6)

It can now easily be inferred from the above analysis that the polar radius of the
non-circular impingement zone, with respect to the stagnation point (which is an
upstream focus of the impingement zone) is given by

re (φ, θ) = r0

(
sinφ

1 + cosφ cos θ

)
. (3.7)

3.2. Radial locations, Rj (θ), of non-circular hydraulic jump

As mentioned in § 3.1, the impingement zone of the inclined circular jet can be
modelled as an impingement zone of an equivalent vertical elliptic jet, which is
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approximately of the size of the elliptic jet itself. The radially spreading flow in this
case will be three-dimensional in its nature. This three-dimensional nature of the
flow can be modelled effectively as a pseudo two-dimensional one by considering
the coordinate r itself as a function of θ . Further simplifications are made by
assuming that surface tension effects are negligible in comparison to gravity effects.
Moreover, gradients along the axial directions are assumed to be much more dominant
in comparison to those along the radial directions, consistent with the prevailing
length scales. Using these considerations, the pertinent equations of continuity and
momentum in cylindrical coordinates can be written as:

∂Vr

∂r
+

Vr

r
+

∂Vz

∂z
= 0, (3.8a)

Vr

∂Vr

∂r
+ Vz

∂Vr

∂z
= −g

dh

dr
+ ν

∂2Vr

dz2
, (3.8b)

where Vr (r, z) and Vz(r, z) are the components of the velocity in the radial and vertical
directions, respectively, h(r) is the thickness of the fluid layer, and g is the acceleration
due to gravity. Equations (3.8a) and (3.8b) are consistent with the following boundary
conditions:

Vr (r, 0) = 0, (3.9a)

Vz(r, 0) = 0, (3.9b)

where r = r(θ). [
∂Vr

∂z

]
z=h(r)

= 0, (3.9c)

r

∫ h

0

Vr (r, z) dz = q, (3.9d)

where q = Q/2π, Q being the volume flow rate (as the product of rhVr happens to be
an invariant function with respect to θ). The coordinate r , which is itself a function
of θ , is measured with respect to the source of the radially spreading flow.

Equations (3.8a) and (3.8b) are now re-written in a dimensionless form using typical
scales for the radial velocity Vr

∗, vertical velocity Vz
∗, radius r∗ and thickness of the

liquid layer z∗, with the following substitutions:

Vr = αVr
∗, α = q1/8ν1/8g1/8, (3.10a)

Vz = βVz
∗, β = q−1/4ν3/4g1/4, (3.10b)

r = γ r∗, γ = q5/8ν−3/8g−1/8, (3.10c)

z = δz∗, δ = q1/4ν1/4g−1/4. (3.10d)

Rescaled equations (dropping asterisks) are then obtained as

∂Vr

∂r
+

Vr

r
+

∂Vz

∂z
= 0, (3.11a)

Vr

∂Vr

∂r
+ Vz

∂Vr

∂z
= −dh

dr
+

∂2Vr

dz2
. (3.11b)

The boundary conditions in terms of rescaled quantities can be described as

Vr (r, 0) = 0, (3.12a)
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where r = r(θ),

Vz(r, 0) = 0, (3.12b)[
∂Vr

∂z

]
z=h(r)

= 0, (3.12c)

r

∫ h(r)

0

Vr (r, z) dz = 1. (3.12d)

Although the boundary-layer analysis break, down in a small region around the
point of separation, the rest of the flow can be described well by following such
approximations. The system of averaged equations in the z-direction, however, avoids
showing the singular behaviour at the point of separation and can adequately describe
the flow pattern involving the separation of the boundary layer in an integrated sense.
Integrating (3.11b) over z from 0 to h(r), and simultaneously exploring the continuity
equation (3.11a), we obtain (after incorporating boundary conditions (3.12a) to
(3.12d)):

1

rh

d

dr

[
r

∫ h

0

Vr
2 dz

]
= −h′ − 1

h

∂Vr

∂z
|z=0, (3.13)

where the prime denotes differentiation with respect to r .
Now, define:

F2 =

∫ h

0

(
Vr

Vav

)2

dz, (3.14)

where Vav is the average velocity, defined as

Vav =
1

h

∫ h

0

Vr (r, z) dz. (3.15)

Further, conservation of mass yields

Vavhr = 1. (3.16)

From equations (3.13) to (3.16), we obtain:

Vav(F2Vav)
′
= −h

′ − 1

h

∂Vr

∂z
|z=0 . (3.17)

For further simplifications, a judicious choice of the velocity profile must be made.
In this context, it can be noted here that the classical von Kármán and Pohlhausen
method for boundary-layer analysis assumes a velocity profile that is ascertained
purely by the external flow conditions (Schlichting 1960). Here, however, the thickness
of the fluid film, h(r), plays a role that is very much analogous to the boundary-layer
thickness in a classical viscous flow analysis, in terms of dictating the exact self-similar
nature of the velocity profile. Accordingly, one may write

Vr (r, z)

Vav

= f (η), (3.18)

where η = z/h(r) and Vav is the average velocity, satisfying (3.16). Since the velocity
profile must also satisfy the boundary conditions (3.12a) to (3.12d) and (3.16), f (η)
must obey the following restraints:

f (0) = 0, (3.19)
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Figure 6. (a) Numerical solution of the equation (3.25), (b) typical solution for Vav and h,
which is indicative of a characteristic discontinuity at r(θ ) ≈ 1.

f
′
(1) = 0, (3.20)∫ 1

0

f (η) dη = 1. (3.21)

For example, a quadratic profile

f (η) = 3η − 3
2
η2, (3.22)

may be one of the simplest possible polynomial forms for the function f , satisfying
(3.19) to (3.21). Then, from (3.14), F2 = 6/5, is obtained as a constant, and (3.17)
becomes

6
5
VavVav

′
= −h

′ − 3Vav

h2
. (3.23)

Any other valid ansatz for f will still lead to the same form as (3.23), except for the
numerical coefficients. There is no qualitative change, however, since all equations
of the type (3.23), corresponding to different profile shapes, f (η), can be further
transformed to a general form:

VavVav
′ + h′ =

−Vav

h2
, (3.24)

after suitable rescaling of h, v and r . Combining equations (3.16) and (3.24), we obtain

Vav

′
(

Vav − 1

Vav
2r

)
=

1

Vavr2
− Vav

3r2. (3.25)

Typical solutions of (3.25) are shown in figure 6. At large enough values of r(θ),
the velocity suddenly increases, which corresponds to a sudden drop in height. This
singularity is interpreted physically as the end of the plate where the water runs
off (Bohr et al. 1993). The above solution for the flow field after the jump can be
connected to the solution before the jump by means of a Rayleigh shock, which
conserves mass and momentum flux given as follows:

Vav1h1 = Vav2h2, (3.26a)

h1

(
Vav1

2 +
gh1

2

)
= h2

(
Vav2

2 +
gh2

2

)
, (3.26b)
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Velocity profile Approximate value of C

8
3
η − 4

3
η3 0.76

20
9
η − 5

9
η4 0.83

15
7
η − 3

7
η5 0.85

Table 1. Numerical value of constant C (equation (3.27)) for higher-order velocity profiles.
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Figure 7. Radial locations, Rj (θ ) of the hydraulic jumps for different values of nozzle angles

(φn) and flow rates (Q): (a) r0 = 3.5 mm, Q = 5.83 × 10−5 m3 s−1, φn = 60◦, H = 56 mm
(b) r0 = 4.35 mm, Q = 8.33 × 10−5 m3 s−1, φn = 45◦, H = 80 mm, (c) r0 = 3.25 mm,
Q = 5 × 10−5 m3 s−1, φn = 35◦, H = 40 mm.

where, subscripts 1 and 2 correspond to values before and after the jump. Since
the above shock (which can be interpreted as a hydraulic jump, in the present case)
occurs very close to r(θ) = 1 (in the dimensionless coordinates), the radial location
of the jump, Rj (θ), scales approximately as r∗, and is given from (3.10c) as

Rj = γ = Cq5/8ν−3/8g−1/8. (3.27)

Here, the constant C depends on the velocity profile chosen in (3.14). For a parabolic
profile, for example, C turns out to be approximately 0.73. For higher-order profiles,
satisfying the requisite boundary conditions (equations (3.19) to (3.21)), the respective
values of C are shown in table 1. Further, for the present case, q can be expressed as

q =
Q

(2π)
= rh(θ)Vr. (3.28)

From equations (3.2), (3.7) and (3.28), we obtain, at rp = re

q = rh(θ)V =
r0

2

2

[
sin3 φ

(1 + cosφ cos θ)2

]
V. (3.29)
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jumps is independent of V for a fixed φ.

With this value of q , radial locations of the jump Rj (φ, θ) are obtained as

Rj (φ, θ) = C

[
r0

2

2

sin3φ

(1 + cosφ cos θ)2
V

]5/8

ν−3/8g−1/8. (3.30)

As a special case, the radius of the circular hydraulic jump can be obtained by putting
φ = π/2 in equation (3.30), as

Rj = C

(
r0

2V

2

)5/8

ν−3/8g−1/8, (3.31)

which can also be written as

Rj = Cq5/8ν−3/8g−1/8. (3.32)

Equation (3.32) is essentially the same as that developed by Bohr et al. (1993), which
shows that the instance of a circular hydraulic jump can be obtained as a special case
from the present generalized theory.

A comparison of experimental results and the present theoretical predictions is
shown in figure 7. Experimental results are in extremely good agreement with the
corresponding theoretical predictions for the hydraulic jumps bounded by a smooth
curve. Predictions regarding circular hydraulic jumps (CHJ), (φ = π/2), are also
plotted on the same figure, for effective comparisons. It can be shown that the aspect
ratio (ratio of the major axis, a, to the minor axis, b) of the non-circular hydraulic
jump is given by

a

b
=

1

(1 − cos2 φ)5/8
. (3.33)
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Point O

(b)

(a)

φ

τ = 0τ = π

Figure 9. (a) Illustrative sketch of jump–jet interaction. (b) Jet–jump interaction (encircled)
observed during our experiments. This interaction perturbs the flow leading to cornered
hydraulic jumps.

Hence, the aspect ratio is a function of φ only, and is independent of V , as mentioned
in § 2. Variations in aspect ratio with φ, as obtained using (3.33) and from our
laboratory experiments, are shown in figure 8.

4. Hydraulic jumps with corners
A series of jump profiles with altogether different shapes emerge for φ � 25◦. At

these values of φ, the elliptic impingement zone elongates substantially such that
the jump profile at the extreme upstream position (θ = 0) makes a contact with
the impinging jet (see figure 9). This confluence, termed the ‘jump–jet interaction’, is
dependent on parameters φ, V and d . The upstream location of the impingement
zone, which now coincides with the extreme upstream of the jump profile, becomes
somewhat pointed, as depicted in figure 9 (refer to the point O in figure 9a). From
this point, two identical branches of jump emerge. At the vicinity of the impingement
zone, the fluid undergoes a ‘shooting flow’, with a relatively high velocity. This makes
two branches of the jump diverge from each other. However, the two branches are
curved, as is the boundary of the impingement zone itself. Further downstream, the
two branches come closer. Depending on the distance between the branches and their
strengths, different interactions may be possible. These interactions can be termed
as the ‘jump–jump interactions’. At a relatively low impingement velocity, the jump
profile shape more or less conforms to isosceles triangular shapes (figure 10(a(i), (ii)
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(a)(i)

(b)(i)

(c)(i)

(c)(ii)

(a)(ii)

(b)(ii)

Figure 10. Hydraulic jump with corners: (a)(i), (b)(i) and (c)(i) are type I, type II and type III
jump profiles, respectively, (a)(ii) (φn = 17.5◦, Q = 5 × 10−5 m3 s−1, d = 6.48 mm, H = 11mm),
(b)(ii) (φn = 17.5◦, Q = 8.33 × 10−5 m3 s−1, d = 6.48 mm, H = 11 mm), and (c)(ii) (φn = 17.5◦,
Q = 1.25 × 10−4 m3 s−1, d = 6.48 mm, H = 11 mm) are the corresponding cornered jumps
visualized in our experiments.

(type I jumps)), the vertex of the triangle being located at the extreme upstream point
of the jump profile. Additionally, we observed the formation of wave structures and
disturbances beyond the base (side opposite to the extreme upstream) of the triangle,
as can be seen in figure 10(a)(i).

With an increase in V , the extreme upstream of the jump becomes more pointed.
The two equal sides of the jump profile elongate and become curved. The base takes
a bow shape and its length decreases. The typical form observed can be described as
a ‘tear drop’ shape (figure 10b(i), (ii)) (type II jumps). With further increases in V , the
two branches of the jump profile, emerging from the extreme upstream point come
closer to each other. At one point, the third branch (i.e. the branch perpendicular
to the line of symmetry) disappears and the other two branches intersect each
other, giving the jump profile a typical shape. The shape now resembles that of
a fish (figure 10c(i), (ii)) (type III jump). With any increase in V beyond this, the
profile elongates and encompasses a greater area. However, the jump profile shape
remains unaltered. Figure 11 depicts the qualitative changes in the hydraulic jump
profiles with the corrosponding variations in φ and V . Disturbances and waves of a
secondary nature have also been observed beyond the third branch and at the point of
intersection of the branches (except at the extreme upstream point)(see figures 10a(ii)
and b(ii)).
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Figure 11. Phase diagram for hydraulic jumps due to obliquely impinging circular liquid jet
on a flat horizontal surface, (d = 6.45 mm, H = 9 mm).
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Figure 12. Shock reflections: (a) regular reflection, and (b) Mach reflection, Sinc and Sref are
incident and reflected shocks, respectively, and Sm is the Mach stem. (c) Waves and structures
of a secondary nature in shock reflections.

Qualitative phenomenological explanations for the formation of such non-intuitive
hydraulic jump profiles can be provided by appealing to the similarity between a
hydraulic jump and a compression shock (Preiswerk 1940). When two oblique waves
meet each other, the axis of symmetry passing through the meeting point conceptually
acts as an impervious wall. One of the shocks may be considered to be incident on
that wall, while the other is reflected. Two types of reflection, namely regular reflection
and Mach reflection (figure 12), have been reported to characterize these situations. In
Mach reflection, the incident wave and the reflected wave meet at a point away from
the axis of the symmetry. A third wave, known as a Mach stem, joins this point with
the axis of symmetry. The Mach stem is, in general, curved at the triple point. The
entire stem may also be curved, depending on the characteristics of the interacting
waves. Further, waves and structures of a secondary nature are observed downstream
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of the Mach stem (figure 12c). Similar interactions between discontinuity waves in
shallow-water flows have been observed by Gilmore, Plesset & Crossley (1950).

The hydraulic jump profiles with corners (figure 10) can be explained in light of
regular and Mach reflections mentioned as above (refer to figure 12). Formation of the
triangular jump profile (type I) corresponds to the case of a Mach reflection, where
the base of the triangle is nothing but a Mach stem. With further development,
the Mach stem becomes shorter, as observed in type II profiles. Eventually, a
case of regular reflection occurs as the flow rate is further increased, leading to
a complete disappearance of the Mach Stem in type III profiles. Waves and structures
of a secondary nature (see figures 10a(ii) and b(ii), similar to those encountered
in compressible gasdynamics beyond the shock wave interactions, have also been
observed during the present experiments.

5. Summary and conclusions
In this paper, we have studied hydraulic jumps that occur when circular impinging

jets fall on a smooth horizontal plate at different angles of obliquity. Changes in the
flow field of an impinging jet owing to its inclination are analysed from both theoretical
and experimental perspectives. It has been revealed that the circular impingement
zone deforms to an equivalent elliptic one. The stagnation point, consequently, shifts
to the upstream focus of the elliptical impingement zone. The analysis for the radial
locations of the non-circular hydraulic jump profile (jumps bounded by a smooth
curve), based on this conjucture, gives satisfactory predictions, as evident from the
favourable comparisons with experimental observations. For jumps with corners,
which form at lower angles of jet inclination, strikingly contrasting profiles can be
obtained, for which a phenomenological explanation is provided by drawing analogies
from shock-wave interactions.

REFERENCES

Abramovich, G. N. 1963 The Theory of Turbulent Jets (ed. L. H. Schindel). MIT Press.

Arakeri, J. H. & Rao, A. 1996 On radial flow on a horizontal surface and the circular hydraulic
jump. J. Indian Inst. Sci. 76, 73–91.

Beltos, S. 1975 Oblique impingement of circular turbulent jets. J Hydraul. Res. 14, 17–36.

Blackford, B. L. 1996 The hydraulic jump in radially spreading flow: a new model and new
experimental data. Am. J. Phys. 64, 164–169.

Bohr, T., Dimon, P. & Putkaradze, V. 1993 Shallow-water approach to the circular hydraulic
jump. J. Fluid Mech. 254, 635–648.

Bouainouche, M., Bourabaa, N. & Desmet, B. 1997 Numerical study of the wall shear produced
by the impingement of a plane turbulent jet on a plate. Intl J. Numer. Meth. Heat Fluid Flow.
7, 548–564.

Bradshaw, P. & Love, E. M. 1959 The normal impinging jet of a circular air jet over a flat surface.
ARC R &M 3205. Aero. Res. Council, UK.
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